Case report

The aim of this study was to describe a new variation of the technique to evaluate lymph drainage utilizing lymphoscintigraphy. A LS scan marks the route of lymphatic vessels and may be used to assess both manual lymph drainage and lymph drainage after using some apparatuses. This evaluation may be dynamic, collecting images whilst performing lymph drainage or static, with scans before and after the lymph drainage procedure.

KEY words: lymphoscintigraphy, manual lymph drainage, lymphedema

Lymphoscintigraphy among other indications is also used in the diagnosis and post-treatment evaluation of lymphedema [4, 5]. Its use has not been described immediately after performing lymph drainage in order to evaluate the effect of drainage. The aim of this study was to describe a new variation of the technique to evaluate lymph drainage utilizing lymphoscintigraphy.

A scan lymphoscintigraphy marks the route of lymphatic vessels and may be used to assess both manual lymph drainage and lymph drainage after using some apparatuses. When lymphedema is present, it is not always possible to mark the route of the lymphatic vessels in the affected limb, but this is usually possible in the unaffected limb. Thus, the unaffected limb may be used for the immediate evaluation of the lymph drainage of the affected limb. This evaluation may be dynamic, collecting images whilst performing lymph drainage or static, with scans before and after the lymph drainage procedure.

Case report

This new technique is illustrated here by describing the evaluation of a patient with grade 2 lymphedema of the left arm with a volumetric difference greater than 500 mL compared to the contralateral limb. The study was performed in the medical school in Hospital de Base in São José do Rio Preto, Brazil. The lymph drainage technique assessed was described by Godoy and Godoy (2004) [6]. The technique of lymph drainage employed uses manual compression movements, using a continuous pressure of 30–40 mm Hg, initiating in the region of the wrist and moving along the lymphatic course of the forearm and arm in the direction of the axillary region, a procedure that takes about two minutes. These values are recommended by lymph drainage techniques with practitioners being trained subjectively.

We performed lymphoscintigraphy after injecting 0.4 mL of dextran marked with technetium-99m intradermally between the 2nd and 3rd fingers of both hands. The patient was placed in the dorsal decubitus position with the arms elevated but placed above the head on the examination table.

The examination was dynamic over 40 minutes with images at 60 sec intervals (Figure 1) followed by a scan of the arms (Figure 2). After this scan evaluation a second dynamic study as above followed during lymph drainage, to show the flow of the radioisotope to the axillary lymph nodes (Figure 3). Finally another scan of the arms was performed to analyze the quality of the images (Fig-
The study was approved by the Local Ethics Research Committee and the patient signed a written consent form.

Figure 1 shows the baseline levels relative lymphedema in right arm (curve in yellow) and Figure 3 shows the variations after performing lymph drainage.

The quantitative alterations were evaluated by the change in the number of particles that reached the axillar region after the start of lymph drainage. The images were analyzed by two nuclear physicians and one lymphologist.

Figure 2. The initial dynamic study in the arms

Figure 3. The dynamic study during 2 minutes of lymph drainage utilizing Godoy & Godoy technique a lymphedema arm

Figure 4. The scan after lymph drainage in arms
As is evident in Figures 2 (before) and 4 (after 2 minutes of lymph drainage), lymphedema in right arm demonstrate a reduction in the dermal reflux and the concentration of radioisotope in lymphatic collectors.

The current study describes a new technique to assess the efficacy of lymph drainage that has not been published in the ISI, Scopus and PubMed Electronic Databases. It is different from conventional evaluation methods because it assesses the efficiency during (dynamic) and immediately after drainage (static). Dynamic evaluation will measure variations of lymph obstruction at the lymph nodes or lymphatic vessels displacement.

The post-treatment scan shows the efficacy of lymph drainage and dermal reflux, by counting regions of interest over the affected and the non affected arm for comparison in order to identify lymph drainage obstruction. Evaluation using this technique requires standardization so that similar parameters are compared.

References